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Ordination

What is the principle of ordination?
-example: PCA

How to interpret the results of an
ordination?

- explained variance
- biplots

What are (some of) the different
techniques available for unconstrained
ordination?

- CA, NMDS, PCoA
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Overview of multivariate tools

o Similarity (Resemblance)

n Clustering — searches discontinuities,
o Unsupervised fOCUS. on pg/rW/se( ine”)
relationships

0 Supervised

o0 Ordination (Latin: ordinatio setting in order)

o0 Unconstrained — searches main trends (general
1 Constrained gradients)
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Overview of multivariate tools

CLUSTERING
Species variables Species variables Observation units | .
h2] 2 &
5 E 5
s 1. Transform or - 2. Calculate dissimilarities c
.g Y standa_{rdize_variables g YT between each pair of .g
g if desired g observations 2 D ised
p > 5 » @ . supervise
§ Data matrix § Transformed " § Distance matrix unsu PeerSEd C | b
data matrix Are there groups an samples be
(clusters) of similar grouped/clustered
samples? by ex'FernaI
descriptors?
ORDINATIONS TESTS of HYPOTHESES /

(visualization of multivariate patterns) (concerning a priori groups)

5, Non-parametric test for prEd|Ct|0n

differences in location

7. Non-parametric test for
differences in dispersion

4. Constrained ordination
(Canonical Analysis of Principal Coordinates)

3. Unconstrained ordination
(Non-metric MDS)

(NPMANOVA) (NPDISP)
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Ak oA a _— Which species are responsible

o o © A for group differences?
@] o A, A
o o
6. Calculate correlations

» with canonical axes
Traditional analogue: CVA or DFA.

Shows group differences in location in
multivariate space, if they exist.

Traditional analogue: PCA.
Shows overall and relative within-group
patterns of dispersion.
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even more overview...
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=PrL



even more overview...

Y X
“Species” [Explanatory variables
n )]
%. 01 %_ Quantitative, and/or
= or abundance Y=£(X)? £ | qualitative (recoding)
n n
Exploration Environmental interpretation
Using ordination Indirect gradient
scores °°°°°° sscssssss P analysis <
e Linear 7,
‘asgé el » PCA cecscccsssescans > RDA € %&
§¢ _’l — %,
unimodal P«
...... cecsecccce P RS
e CA CCA
PCoA ...........
> db-RDA +—
¢ NMDS $
Cluster Discriminant P _
tarTce analysis analysis tar!ce
matix _1....... ceeeerenns ereseenns ceereveenes veeqp Mantel test <=—| MaRX

(two matrices)
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Goals of ordination
0 Reduce dimensionality

0 reduce the number of dimensions for visualization
typically 2 dimensions; identify groups of similar
samples

o identify taxa that drive (dis)similarities between samples
(species scores).

o identify environmental variables that explain the
(dis)similarities in taxa composition between samples.

=> to simplify the understanding of multivariate data
(hypothesis generation)
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Principles of unconstrained ordination

n identify principal axes (dimensions, components or
factors)

o first axis explains most of the differences among samples
0 each axis is independent

n project a cloud of points (objects) onto axes

o0 maintain much of the variance of the dataset (choice of
how many components should be shown)
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Principal Component Analysis (PCA)

o Archetype of ordination methods

o Descriptors should be quantitative (standardized)

o0 PCA performs a rotation and a translation of the principal
axes of a dispersion matrix (covariance and correlation).

n PCA maintains the distances (Euclidean) between objects
in reduced space

Usually inadequate for community data (double zero problem) but good
for environmental data
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Principals of Principal Component
Analysis (using Singular Value Decomposition, SVD)

-

Gene 1
Gene 2 7 3 9 8 12
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gene 2

gene 1l
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distance of projection

find center center line through origin to origin
I |
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find main gradient;
maximize sum of squared
distances of projections to
origin (rotation)

add orthogonal axis
through origin;
max. SS(dist) for
second PC

rotate axes, scale (unit
vector)

continue with fitting
3rd PC orthogonal to
2" PG, etc...
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scaling

Principal Component (PC) 1 unit vector = Eigenvector
/ V2
.
P for example: 1 PC1
412 4<% N
*_;— 11 Y slope of PC1: 0.25 ™.~ }1
% 4 4 units on PC1, 1 unit on PC2 < V1
. Pid
4
(5) Eigenvector is used for scaling
(e.g. devided by 4.12) J L
ﬂ N
o
SS(distances PC1) , \
= Eigenvalue for PC1 9%
n—1 8 b‘?/} 1/4.12=0.242
Variation explained by PC1 +<
// l—Y—J
) 4/4.12 =0.97
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Sum of squared (SS) distances on
Eigenvector (here PC2) is called
Y «Eigenvalue of PC2»

P v
o SS(dist .
o | S5@Y) - variance (of PC2)
\ n—1
(6)

variance of all PCs
=> used in scree plots

explained variance (%)
explained variance (%)

' ' '
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Principal Components Principal Components
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Selection of the dispersion matrix (S)

covariance matrix

0 can be used when descriptors are similar or the same units
(or are transformed prior to PCA)

0 preserves the variance of descriptors

correlation matrix
o when descriptors have different units

o0 removes the variance of the descriptors, thus giving all of
them the same weight

n default in vegan::rda
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VISUALIZATION

Scatter plot with
projection of objects
(point symbols)

Ordination axis 2 4

«site» scores

Ordination axis 1

Same ordination axis 2 4

Scatter plot with

projection of descriptors

(arrows)
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Double projection (biplot)

o Shows objects (symbols) and descriptors (arrows) on the same
ordination diagram.
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Double projection (biplot)

o Two types of scaling are available depending on the purpose of
the projection:

o Scaling 1 : Focus on species (Norm of eigenvectors = 1)

o Scaling 2 : Focus on sites (Norm of eigenvectors = square root
of eigenvalues)

o Scaling 3 : A compromise
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PCA
inte rp retation o The proximity between sites 9,

10 and 11 indicates that they
have similar soil features (high
resemblance)

o Site 11 has a high pH (relative to
the other sites), high
temperature but low humidity

o Density contributes little to
explaining differences among
the 12 soil types (short arrow)

PCA on 4 physicochemical soil variables (pH,
temperature, humidity, density) measured
on 12 sites (1-12)

=PrL



considerations

o PC1 and 2 indicates two groups of objects

o PC 1 and 3 shows three distinct groups of samples

o could also be demonstrated by superposing clustering results (e.g. symbols)

=> plot several PCs (1 and 2, 1 and 3, 2 and 3, ...) before interpreting the
proximities of objects

PC2 PC3
° ~+ ‘ ® ® ‘ ] |
+® o .
++ o ¢ ® L
* .'. ® @ ]
ol
—_ _— -
m PC1 PC1
+
e
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Number of PCs - scree plots

o General idea of PCA: reduce dimensions - showing more than 3 PCs is
typically not useful

o Kaiser’s rule: axes which contribute to more than average of explained
variance

o Broken stick model: principal axes which explain less variance than a
random model (broken stick) should not be interpreted

Eigenvalues

e [ . _— Kaiser’s rule:
A5 verage eigenvalue
5 PCs

0.10
0.05 I:l
0003880 dJFErTSR
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a-a_a-a-a-a-a-a-ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.ﬂ.

PC1 |

% variance

Broken stick model:

30 - o
Yo elgenvalue
= Broken stick model 2 PCs
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20 h
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Apply PCA to species abundance
data...?

n PCA preserves Euclidean distances and therefore
considers the double absence of a species as
resemblance (double zero problem)

o after Hellinger transformation, the PCA preserves the Hellinger
distance which ignores double zeros (see PCoA).

o0 The underlying model assumes a linear response of the
descriptors the principal axes
o This assumption is valid only if the gradients are short
o After data transformation, the response might no longer be linear!

0 Alternative ordination techniques for species count
data...

=PrL



Overview of different ordination techniques

Method

Distance preserved

Variables

Principal component analysis
(PCA)

Correspondence analysis (CA)

Principal coordinate analysis
(PCoA), metric (multidimensional)
scaling, classical scaling

Nonmetric multidimensional
scaling (MMDS)

Euclidean distance

7.
%~ distance

Any distance measure

Any distance measure

Quantitative data, linear relation-
ships (beware of double-zeros)

Non-negative, dimensionally
homogeneous quantitative or
binary data; species frequencies
or presence/absence data

Quantitative, semiquantitative,
qualitative, or mixed

Quantitative, semiquantitative,
qualitative, or mixed
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Correspondence Analysis (CA)
also: Reciprocal Averaging

0 Represents the correspondence between the rows and
columns of a double centered table of frequency

o Corresponds to a PCA on a covariance matrix of conditional
probabilities

o Preserves Chi-square distances
o lIgnores double zeros

n Suitable method for presence-absence or abundance data

o BUT: CA is sensitive to infrequent species
n Long gradients generate horseshoe effects

n Descriptors should be of the same nature and expressed in
the same unit

o0 Negative values and null vectors (objects or descriptors) in
the data matrix are not supported
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CA

interpretation

CA of an abundance table of 10 species

observed at 12 sites

Sp3m

Axe 2

Sp.7m

° 10 11
Q
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m Sp.6

120

8o

Sp8€m  mSpo
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Sites 1, 2, 3, and 4 have a
similar composition (relative
frequencies of species)

Species 1, 2 and 3 are
abundant in these sites

Species 8 and 9 are absent or
very sparse in these sites

Species 6 is present (or
absent) at almost all sites



Principal Coordinate Analysis (PCoA)

o Uses any resemblance matrix (similarity matrix)

o PCoA preserves distance or similarity of the selected association
measure.

o proximity of objects indicates resemblance

o Allows the use of all types of variables (qualitative, semi-

quantitative, quantitative), and even to mix them, provided an
adequate association measure is chosen (e.g. Gower)

o Doesn’t allow the joint analysis of objects and descriptors (such as in
CA or PCA; biplots)

o either a scatter plot of the objects (Q mode) or of the descriptors
(R mode).

o possibility to project descriptors a posteriori onto PCoA
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Application of PCoA to data with species
abundances

o0 PCoA can produce negative eigenvalues.
n these axes are not interpretable.
o choice of distance measure important

o0 Objects are often better dispersed as compared to CA (no
agglutination)

0 less sensible to rare species

o0 Can be combined with a cluster analysis obtained with the
same distance matrix

0 Projection of objects onto the ordination
o Superposition of the dendrogram.
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Non-Metric Multi-Dimensional Scaling (NMDS)

o Is based on any dissimilarity or distance matrix (even non-
metric) and tolerates missing data

o Non-parametric method which preserves the order of
resemblance of the objects (ranks) along a few (usually 2) axes
o0 Result depends on the number of axes selected

o The position of the origin, scale and orientation of the axes are
arbitrary

0 distances between objects is not a priority
0 axes are not hierarchical
0 axes may undergo inversion, rotation or re-centering
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Stages of NMDS 6%@

1.
2.

3.
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Select a the distance matrix (e.g. Bray-Curtis) %

Select the number of axes (default: 2)

Selection of the initial configuration of the objects (random or
PCoA)

Calculation of the matrix of distances d,; between objects of
this initial configuration

Representation of the Shepard diagram and regression of the
adjusted distances with the observed distances

Measure of the goodness-of-fit of the regression with an
objective function of stress

Improvement of the configuration in order to minimize the
stress function

Iteration of the stages 4 to 7 until convergence, which then
produces the coordinates of the objects in the ordination



Shepard diagram and quality of the adjustment

15 20 25

Ordination Distance
10
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Shepard plot

Mon-metric fit, R2 = 0.985
Linear fit, R2 = 0.917

0.6 0.8 1.0 1.2

Observed Dissimilarity

Guideline:

stress < 0.05 excellent
stress < 0.1 good

stress < 0.2 usable

stress > 0.2 not acceptable

1.4

NMDS2

S5 0 5 10

-10

-20

Goodness of fit
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Application of NMDS to species
abundance data...

o Very robust and flexible non-parametric method, advocated by
some authors

o NMDS is an iterative optimization method and results depend on
the number of axes and the initial configuration

o It is advisable to test different initial configurations

0 Recentering and rotation of the axes is done in order to
maximize the variance on the first axis

o Possibility to project the species a posteriori on the NMDS plot
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Choice of unconstrained ordination

1. PCA: quantitative descriptors (or semi-quantitative) linearly
related (or at least monotonic)
1. Covariance or correlation according to data homogeneity
2. Prior transformation in case of long gradients with many zeros (e.g.
Hellinger).
2. CA: descriptors of any kind but of same nature
1. Remove rare species or/and transformation of data in case of horseshoe
effects
3. PCoA and NMDS: choice of an appropriate association matrix
1. PCoA requires a metric and Euclidean distances matrix

2. NMDS is more flexible but requires precautions to ensure convergence to
the optimal solution
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Some general advice on ordination
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Objects (samples) should be independent

If possible, have more objects than descriptors
Consider at least axes 1-2 and 1-3 and take into

account the percentage of variance represented
on each axis (screeplots)

Superimpose the results of an unsupervised
cluster analysis or a priori known groups

Interpret the axes by an indirect gradient
analysis



