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Ordination

What is the principle of ordination?

-example: PCA

How to interpret the results of an 
ordination?

- explained variance

- biplots

What are (some of) the different 
techniques available for unconstrained 
ordination?

- CA, NMDS, PCoA
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Overview of multivariate tools

Similarity (Resemblance)

Clustering

Unsupervised

Supervised

Ordination (Latin: ordinatio setting in order)

Unconstrained

Constrained

searches discontinuities, 
focus on pairwise (“fine”) 
relationships

searches main trends (general 
gradients) 
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CLUSTERING

supervisedunsupervised
Are there groups 
(clusters) of similar
samples?

Can samples be
grouped/clustered
by external
descriptors?

prediction

Overview of multivariate tools
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even more overview… 
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even more overview… 
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Goals of ordination
Reduce dimensionality

reduce the number of dimensions for visualization

typically 2 dimensions; identify groups of similar 

samples

identify taxa that drive (dis)similarities between samples 

(species scores).

identify environmental variables that explain the 

(dis)similarities in taxa composition between samples. 

=> to simplify the understanding of multivariate data    

(hypothesis generation)
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Principles of unconstrained ordination

identify principal axes (dimensions, components or 

factors)
first axis explains most of the differences among samples

each axis is independent

project a cloud of points (objects) onto axes

maintain much of the variance of the dataset (choice of 

how many components should be shown)
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Principal Component Analysis (PCA)

Archetype of ordination methods

Descriptors should be quantitative (standardized)

PCA performs a rotation and a translation of the principal 

axes of a dispersion matrix (covariance and correlation). 

PCA maintains the distances (Euclidean) between objects 

in reduced space  

Usually inadequate for community data (double zero problem) but good 

for environmental data
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Principals of Principal Component 

Analysis (using Singular Value Decomposition, SVD)

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5

Gene 1 5 4 8 9 11

Gene 2 7 3 9 8 12

Gene 3 4 2 12 9 10

Gene 4 2 5 8 7 9

gene 1
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find center
distance of projection 
to origincenter line through origin

find main gradient;
maximize sum of squared
distances of projections to 
origin (rotation)

rotate axes, scale (unit 
vector)

continue with fitting
3rd PC orthogonal to 
2nd PC, etc…

add orthogonal axis 
through origin; 
max. SS(dist) for 
second PC
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Principal Component (PC) 1

for example: 
slope of PC1: 0.25
4 units on PC1, 1 unit on PC2

4/4.12 = 0.97

1/4.12=0.242

Eigenvector is used for scaling
(e.g. devided by 4.12)

scaling

4

1
4.12

V1

V2
PC1

4

1

unit vector = Eigenvector

𝑆𝑆(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑃𝐶1)

𝑛−1
= Eigenvalue for PC1

Variation explained by PC1
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Sum of squared (SS) distances on 
Eigenvector (here PC2) is called
«Eigenvalue of PC2»

𝑆𝑆(𝑑𝑖𝑠𝑡)

𝑛−1
= variance (of PC2)

variance of all PCs
=> used in scree plots
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Selection of the dispersion matrix (S)

covariance matrix
can be used when descriptors are similar or the same units 
(or are transformed prior to PCA)

preserves the variance of descriptors

correlation matrix
when descriptors have different units

removes the variance of the descriptors, thus giving all of 
them the same weight

default in vegan::rda
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Ordination axis 1

Ordination axis 2

Scatter plot with
projection of objects
(point symbols)

Scatter plot with
projection of descriptors
(arrows)

Same ordination 

axis 1

Same ordination axis 2

e.g. 
cells/samples

e.g. 
genes/species

VISUALIZATION

arrow length reflects importance of 
descriptors!

«site» scores

«species» scores
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Double projection (biplot)
Shows objects (symbols) and descriptors (arrows) on the same 

ordination diagram.

PC2

PC1
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Double projection (biplot)

Two types of scaling are available depending on the purpose of 

the projection:

Scaling 1 : Focus on species (Norm of eigenvectors = 1)

Scaling 2 : Focus on sites (Norm of eigenvectors = square root 

of eigenvalues)

Scaling 3 : A compromise



PCA 

interpretation The proximity between sites 9, 

10 and 11 indicates that they 

have similar soil features (high 

resemblance)

Site 11 has a high pH (relative to 

the other sites), high 

temperature but low humidity

Density contributes little to 

explaining differences among 

the 12 soil types (short arrow)

PCA on 4 physicochemical soil variables (pH, 
temperature, humidity, density) measured 
on 12 sites (1-12)
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PC 1 and 2 indicates two groups of objects 
PC 1 and 3 shows three distinct groups of samples
could also be demonstrated by superposing clustering results (e.g. symbols) 

=> plot several PCs (1 and 2, 1 and 3, 2 and 3, ...) before interpreting the 
proximities of objects

considerations

PC1

PC2 PC3

PC1
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Number of PCs – scree plots
General idea of PCA: reduce dimensions - showing more than 3 PCs is
typically not useful

Kaiser’s rule: axes which contribute to more than average of explained 
variance

Broken stick model: principal axes which explain less variance than a 
random model (broken stick) should not be interpreted

Kaiser’s rule: 

5 PCs

Broken stick model: 

2 PCs
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Apply PCA to species abundance 

data…?

PCA preserves Euclidean distances and therefore 
considers the double absence of a species as 
resemblance (double zero problem)

after Hellinger transformation, the PCA preserves the Hellinger 
distance which ignores double zeros (see PCoA).

The underlying model assumes a linear response of the 
descriptors the principal axes

This assumption is valid only if the gradients are short

After data transformation, the response might no longer be linear!

Alternative ordination techniques for species count 
data…
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Overview of different ordination techniques
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Correspondence Analysis (CA)
also: Reciprocal Averaging 

Represents the correspondence between the rows and 
columns of a double centered table of frequency

Corresponds to a PCA on a covariance matrix of conditional 
probabilities

Preserves Chi-square distances

Ignores double zeros

Suitable method for presence-absence or abundance data
BUT: CA is sensitive to infrequent species

Long gradients generate horseshoe effects

Descriptors should be of the same nature and expressed in 
the same unit 

Negative values and null vectors (objects or descriptors) in 
the data matrix are not supported



Sites 1, 2, 3, and 4 have a 

similar composition (relative 

frequencies of species)

Species 1, 2 and 3 are 

abundant in these sites

Species 8 and 9 are absent or 

very sparse in these sites

Species 6 is present (or 

absent) at almost all sites

CA 

interpretation
CA of an abundance table of 10 species 
observed at 12 sites
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Principal Coordinate Analysis (PCoA) 

Uses any resemblance matrix (similarity matrix)

PCoA preserves distance or similarity of the selected association 
measure.

proximity of objects indicates resemblance

Allows the use of all types of variables (qualitative, semi-
quantitative, quantitative), and even to mix them, provided an 
adequate association measure is chosen (e.g. Gower)

Doesn’t allow the joint analysis of objects and descriptors (such as in 
CA or PCA; biplots)

either a scatter plot of the objects (Q mode) or of the descriptors 
(R mode). 

possibility to project descriptors a posteriori onto PCoA
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Application of PCoA to data with species 

abundances

PCoA can produce negative eigenvalues.

these axes are not interpretable.

choice of distance measure important

Objects are often better dispersed as compared to CA (no 
agglutination)

less sensible to rare species

Can be combined with a cluster analysis obtained with the 
same distance matrix

Projection of objects onto the ordination

Superposition of the dendrogram.
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Non-Metric Multi-Dimensional Scaling (NMDS)

Is based on any dissimilarity or distance matrix (even non-

metric) and tolerates missing data

Non-parametric method which preserves the order of 

resemblance of the objects (ranks) along a few (usually 2) axes

Result depends on the number of axes selected

The position of the origin, scale and orientation of the axes are 

arbitrary 

distances between objects is not a priority

axes are not hierarchical

axes may undergo inversion, rotation or re-centering
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Stages of NMDS

1. Select a the distance matrix (e.g. Bray-Curtis)

2. Select the number of axes (default: 2)

3. Selection of the initial configuration of the objects (random or 

PCoA)

4. Calculation of the matrix of distances dhi between objects of 

this initial configuration

5. Representation of the Shepard diagram and regression of the 

adjusted distances with the observed distances

6. Measure of the goodness-of-fit of the regression with an 

objective function of stress

7. Improvement of the configuration in order to minimize the 

stress function

8. Iteration of the stages 4 to 7 until convergence, which then 

produces the coordinates of the objects in the ordination
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Shepard diagram and quality of the adjustment

Guideline: 
stress < 0.05 excellent
stress < 0.1   good
stress < 0.2 usable
stress > 0.2 not acceptable
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Application of NMDS to species

abundance data…

Very robust and flexible non-parametric method, advocated by 

some authors

NMDS is an iterative optimization method and results depend on 

the number of axes and the initial configuration

It is advisable to test different initial configurations

Recentering and rotation of the axes is done in order to 

maximize the variance on the first axis

Possibility to project the species a posteriori on the NMDS plot



31Numerical Ecology, Prof. A. Buttler - Chap. 5

Choice of unconstrained ordination

1. PCA: quantitative descriptors (or semi-quantitative) linearly 

related (or at least monotonic)
1. Covariance or correlation according to data homogeneity

2. Prior transformation in case of long gradients with many zeros (e.g. 

Hellinger).

2. CA: descriptors of any kind but of same nature
1. Remove rare species or/and transformation of data in case of horseshoe 

effects

3. PCoA and NMDS: choice of an appropriate association matrix
1. PCoA requires a metric and Euclidean distances matrix

2. NMDS is more flexible but requires precautions to ensure convergence to 

the optimal solution 
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Some general advice on ordination

1. Objects (samples) should be independent

2. If possible, have more objects than descriptors

3. Consider at least axes 1-2 and 1-3 and take into 

account the percentage of variance represented 

on each axis (screeplots)

4. Superimpose the results of an unsupervised

cluster analysis or a priori known groups

5. Interpret the axes by an indirect gradient 

analysis


